翻訳と辞書
Words near each other
・ Hilbert number
・ Hilbert operator
・ Hilbert Philip Zarky
・ Hilbert plane
・ Hilbert projection theorem
・ Hilbert R-tree
・ Hilbert scheme
・ Hilbert Schenck
・ Hilbert series and Hilbert polynomial
・ Hilbert Shirey
・ Hilbert space
・ Hilbert spectral analysis
・ Hilbert spectroscopy
・ Hilbert spectrum
・ Hilbert symbol
Hilbert system
・ Hilbert transform
・ Hilbert van der Duim
・ Hilbert Van Dijk
・ Hilbert Wildlife Management Area
・ Hilbert's arithmetic of ends
・ Hilbert's axioms
・ Hilbert's basis theorem
・ Hilbert's eighteenth problem
・ Hilbert's eighth problem
・ Hilbert's eleventh problem
・ Hilbert's fifteenth problem
・ Hilbert's fifth problem
・ Hilbert's fourteenth problem
・ Hilbert's fourth problem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert system : ウィキペディア英語版
Hilbert system
:''In mathematical physics, ''Hilbert system'' is an infrequently used term for a physical system described by a C
*-algebra
.''
In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege〔Máté & Ruzsa 1997:129〕 and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.
Most variants of Hilbert systems take a characteristic tack in the way they balance a trade-off between logical axioms and rules of inference.〔 Hilbert systems can be characterised by the choice of a large number of schemes of logical axioms and a small set of rules of inference. Systems of natural deduction take the opposite tack, including many deduction rules but very few or no axiom schemes. The most commonly studied Hilbert systems have either just one rule of inference — modus ponens, for propositional logics — or two — with generalisation, to handle predicate logics, as well — and several infinite axiom schemes. Hilbert systems for propositional modal logics, sometimes called Hilbert-Lewis systems, are generally axiomatised with two additional rules, the necessitation rule and the uniform substitution rule.
A characteristic feature of the many variants of Hilbert systems is that the ''context'' is not changed in any of their rules of inference, while both natural deduction and sequent calculus contain some context-changing rules. Thus, if we are interested only in the derivability of tautologies, no hypothetical judgments, then we can formalize the Hilbert system in such a way that its rules of inference contain only judgments of a rather simple form. The same cannot be done with the other two deductions systems : as context is changed in some of their rules of inferences, they cannot be formalized so that hypothetical judgments could be avoided — not even if we want to use them just for proving derivability of tautologies.
== Formal deductions ==

In a Hilbert-style deduction system, a formal deduction is a finite sequence of formulas in which each formula is either an axiom or is obtained from previous formulas by a rule of inference. These formal deductions are meant to mirror natural-language proofs, although they are far more detailed.
Suppose \Gamma is a set of formulas, considered as hypotheses. For example \Gamma could be a set of axioms for group theory or set theory. The notation \Gamma \vdash \phi means that there is a deduction that ends with \phi using as axioms only logical axioms and elements of \Gamma. Thus, informally, \Gamma \vdash \phi means that \phi is provable assuming all the formulas in \Gamma.
Hilbert-style deduction systems are characterized by the use of numerous schemes of logical axioms. An axiom scheme is an infinite set of axioms obtained by substituting all formulas of some form into a specific pattern. The set of logical axioms includes not only those axioms generated from this pattern, but also any generalization of one of those axioms. A generalization of a formula is obtained by prefixing zero or more universal quantifiers on the formula; thus
:\forall y ( \forall x Pxy \to Pty)
is a generalization of \forall x Pxy \to Pty.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert system」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.